Inclusive Neutrino-Nucleus Scattering:

- Motivation
- Review of electron scattering
- Results for A=4, 12
- Moving toward heavier nuclei

A. Lovato (ANL)

S. Gandolfi (LANL)

S. Pieper (ANL)

R. Schiavilla (Jlab/ODU

G. Shen (LANL - UW)

J. Carlson

Important for all ≤ GeV neutrino experiments LBNE,T2K, mini/micro-Boone, Nova, Minerva

Inclusive Electron Scattering

$$(E,0,0,p), (E',p'\sin\theta,0,p'\cos\theta)$$

$$\omega = E - E'$$

$$\vec{q} = \vec{p} - \vec{p}'$$

Thus q and ω are precisely known without any reference to the nuclear final state

Inclusive Scattering

$$\frac{d^2\sigma}{d\Omega_{e'}dE_{e'}} = \left(\frac{d\sigma}{d\Omega_{e'}}\right)_M \left[\frac{Q^4}{|\mathbf{q}|^4} R_L(|\mathbf{q}|, \omega) + \left(\frac{1}{2}\frac{Q^2}{|\mathbf{q}|^2} + \tan^2\frac{\theta}{2}\right) R_T(|\mathbf{q}|, \omega)\right]$$

electron scattering

$$R(q,\omega) = \sum \langle 0 | \mathbf{j}^{\dagger}(q) | f \rangle \langle f | \mathbf{j}(q) | 0 \rangle \delta(w - (E_f - E_0))$$

$$R(q,\omega) = \int dt \langle 0 | \mathbf{j}^{\dagger}(q) \exp[i(H-\omega)t] \mathbf{j}(q) | 0 \rangle$$

Full Response: Ground State (Hamiltonian) Currents Propagation for final states

Impulse Approximation for quasi-elastic incoherent sum over single nucleons

requires momentum distributions and spectral functions

What is needed?

Hamiltonian: two-nucleon (+ 3 nucleon) interactions

Currents: I + 2-nucleon currents + ...

yields ground state, current, FSI, ...

Same model for beta-decay, astrophysical neutrinos, double-beta decay, accelerator neutrinos

Simple view of Nuclei: inclusive scattering

Charge distributions of different Nuclei:

figure from <u>faculty.virginia.edu/ncd</u> based on work of Hofstadter, et al.: Nobel Prize 1961

Scaling (2nd kind) different nuclei

Donnelly and Sick, 1999

Inclusive scattering measures properties at distances $\sim \pi / q \leq 1$ fm

Nucleon-Nucleon Interactions

Deuteron Potential Models with Different Spin Orientations

t20 experiment Jlab R. Holt

Forrest, et al, PRC 1996

Ground States

- Non-relativistic nucleons only model
- AVI8 + 3-nucleon interactions
- Includes pion exchange and fits phase shifts to fairly high energies (elastic threshhold)
- Also fits low energy properties of nuclei

FIG. 2 GFMC energies of light nuclear ground and excited states for the AV18 and AV18+IL7 Hamiltonians compared to experiment.

Momentum Distributions and Spectral Functions

Schiavilla, et al 1986, Benhar, et al 1993

Spectral Function in NM

Benhar, 1989

np vs. pp momentum distributions

Carlson, et al, arXiv:1412.3081

JLAB, BNL back-to-back pairs in 12C np pairs dominate over nn and pp

E Piasetzky et al. 2006 Phys. Rev. Lett. 97 162504. M Sargsian et al. 2005 Phys. Rev. C 71 044615. R Schiavilla et al. 2007 Phys. Rev. Lett. 98 132501. R Subedi et al. 2008 Science 320 1475.

P=0 pair momentum distributions

Currents

¹²C elastic form factor

Hoyle state transition form factor

(e, e') Inclusive Response: Scaling Analysis

Donnelly and Sick (1999)

Single nucleon couplings factored out Momenta of order inverse internucleon spacing: Large enhancement of transverse over longitudinal response

Requires beyond single nucleon physics; spectral function alone will not work

Longitudinal/Transverse separation in ¹²C

from Benhar, Day, Sick, RMP 2008 data Finn, et al 1984

Microscopic (non-relativistic nucleons) approach:

- Interactions fit to NN scattering data
- Realistic' models of two-nucleon currents
- Calculate response with full inclusion of final-state interactions and two-nucleon currents

Disadvantages: (can be improved) non-relativistic nucleons no pion production or Δ production

Advantages:

same treatment for initial and final states include full realistic interactions fit to NN data with simultaneous two-nucleon currents

What we can compute reliably (given the model)

$$R_{L,T} (q,\omega) = \sum_{f} \delta(\omega + E_0 + E_f) | \langle f | \mathcal{O}_{\mathcal{L},\mathcal{T}} | 0 \rangle |^2$$

Easy to calculate Sum Rules: ground-state observable

$$S(q) = \int d\omega \ R(q,\omega) = \langle 0|O^{\dagger}(q) \ O(q)|0\rangle$$

Imaginary Time (Euclidean Response) statistical mechanics

$$\tilde{R}(q,\tau) = \langle 0 | \mathbf{j}^{\dagger} \exp[-(\mathbf{H} - \mathbf{E_0} - \mathbf{q^2}/(2\mathbf{m}))\tau] \mathbf{j} | \mathbf{0} \rangle >$$

$$H = \sum_{i} \frac{p_i^2}{2m} + \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk}$$

$$\mathbf{j} = \sum_{i} \mathbf{j}_i + \sum_{i < j} \mathbf{j}_{ij} + \dots$$

Sum rules in 12C

Lovato, et. al PRL 2014

Single Nucleon currents (open symbols) versus Full currents (filled symbols)

Euclidean Response

Sum rule → elastic FF² w/ increasing T

A=4 EM response

Lovato, et al, arXiv:1501.01981

12C Euclidean Response: EM

¹²C Euclidean Response: Neutral Current

Lovato, et al, arXiv: 1501.01981

Larger Nuclei: Argon

Two (complimentary) approaches:

Quantum Monte Carlo for Larger Nuclei (AFDMC, sample spins and isospins)

Ground states, momentum distributions, sum rules, Euclidean Response

Factorization Approaches at two-nucleon level keep two-nucleon dynamics exactly (interactions, current) global constraints from QMC approaches (sum rules, Euclidean) improvable: relativistic kinematics, Deltas, ...

Thanks to:

ANL devoting ~ I 00M core-hours to this project plus staff/postdoc time NULEI SciDAC-3 project (computingnuclei.org)
INCITE award to NUCLEI project amount largest in country
- neutrino scattering is an important goal
LANL support through LDRD-DR and LDRD-ER Projects

Backup Slides

Nucleon Form Factors

Gonzalex-Jiminez, Caballero, Donnelly, Phys. Reports 2013

Cold Atoms (Fermions at Unitarity)

Both at $q=4.5\ kF$ Density and Spin Response Identical for PWIA or Spectral Function